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Background

› Channel coding provides reliable transmission by introducing 
structured redundancy into the message

› Coding theorist has been trying to find the capacity-
approaching codes

› Turbo and LDPC codes approach the capacity limit within 
1dB on AWGN channels



Complex BCJR MAP Decoding

› Performance and complexity are usually contradicting metrics 
› Strong codes usually have high decoding complexity and high 

latency
› Turbo decoder consists of iterative decoding of two 

convolutional decoders 
› BCJR maximum a posteriori (MAP) probability decoder is the 

optimal convolutional decoder
› It has an exponential complexity in terms of the memory order
› Little progress so far in reducing decoding complexity without 

losing optimality 



MAP Decoding

?

› The key hurdle is due to the fundamental lack of theoretical 
understanding of decoding process

› BCJR MAP decoding of a convolutional code is complex 
dynamic process

› Decoding depends on all received signals and all historical 
decoding information

› No explicit decoder input-output transfer function is known
› Thus difficult to simplify the decoder 
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Motivation 

› (1) Convolutional encoder is simple and can be implemented 
by shift registers

› (2) Decoding is a reverse process of encoding process
This implies that there should exist some explicit relationship 
between encoder and decoder

(1) What is the explicit relationship between encoding and 
decoding? 

(2) Can the decoder be represented by just using simple shift 
register encoder structures as well ?



Contributions in this initial work

› Revisit the BCJR soft-input soft-output (SISO) MAP decoding 
process of rate-1 convolutional codes. 

› Establish some interesting duality properties between encoding 
and decoding of rate-1 convolutional codes. 

› The BCJR SISO MAP decoders can be represented by their 
dual SISO channel encoders using shift registers in the 
complex number field. 

› The dual encoder structures for various recursive and non-
recursive rate-1 convolutional codes are derived.

Reference: Li, Rahman, Vucetic, “Duality of channel encoding 
and decoding: part I – Rate 1 convolutional codes,” submitted, 
available on Arxiv. 
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› It is so called because encoder performs convolutional process 
of information message b and encoder impulse response

Rate-1 convolutional encoder, generated by g(x)=a(x)/q(x)

Convolutional Encoder



› Encoding process is a finite machine 
› Trellis diagram representation
› Trellis illustrates state transition and in/out relationship

Trellis Diagram



Transceiver Structure
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› BCJR MAP decoding is the optimal symbol-wise decoding 
algorithm 

› It is a bidirectional decoding process
› It consists of a forward and a backward recursive calculation

BCJR MAP Decoding

ܾ݇ ݇

݇
ᇱ

݇ ൅ 1 ݇ ᇱ

ሺ௠ᇲ,௠ሻ∈௎ሺ௕ ௞ ୀ௪ሻ



› ݇ߙ െ 1 ݉ᇱ : Forward recursion variable

› 		
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› ݇ߚ ൅ 1 ݉ᇱ : Backward recursion variable

› ݇ ݇ ൅ 1
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› Decompose the bidirectional MAP decoding into a forward 
and a backward decoding

ܾ݇
(w ଵ , ௞ , ௄)

› Forward decoding:

› Backward decoding:    

ܾ݇ ௞ , ௄ ݇ ൅ 1 ݇ ᇱ

› Represent the bidirectional MAP decoding output as the linear 
combination of forward and backward decoding output

BCJR MAP Decoding
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› Let 
›
›
›
› Definitions:
› : feedback-only convolutional (FBC) code
›
› ::feed-forward only convolutional (FFC) code
›
› : general convolutional (GC) code

Convolutional Codes



› Example 1
› Consider a FBC code, generated by 
›

Feedback-only CC (FBC)
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› What is the transfer function of the decoder?
› What is the explicit relationship of decoder input ܠොc		and output 
ොbܠ

Example 1

c b

Decoder



› The forward decoder input ܿ݇		
and decoder output ܾ݇

has the 
following linear relationship, 

›

› or in the logarithm domain

Example 1



›

Log-domain Forward Decoder 
Structure of Example 1

The Log-domain forward decoding of the code g(x) =1/(x2+x+1) is 
simply the convolutional encoder, generated by the polynomial 
1/g(x) = x2+x+1.

Decoder implemented using an equivalent encoder, 
generated by the polynomial 1/g(x) = x2+x+1



› Theorem 1 - For a FBC code, generated by a 
generator polynomial 

› gFBC(x) = 1/q(x), 
› we define its dual encoder as the encoder with the 
inverse polynomial of gFBC(x), given by

› qFBC(x) =1/gFBC (x) = q(x). 
› Then the log-domain SISO forward decoding of the 
FBC code can be simply implemented by its dual 
encoder in a complex field.

Duality for Feedback-only CC (FBC)



›

Duality for FBC



› Theorem 1 reveals the encoding-decoding duality 
property for feedback only code (FBC) 

› Does the Theorem 1 apply to the FFC codes and 
general recursive codes?

Duality for Feedforward-only CC (FFC)





Duality for Feedforward-only CC (FFC)



› Theorem 1 cannot be applied to FCC due to 
› (1) the recursive structure of the FFC dual encoder 
(2) complex field addition operations in dual encoder 

› Additional terms come from the common terms of the 
shift register contents of dual encoder 

›
› Modification of dual encoder structure without 
changing its generate polynomial is required 
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› For the above example, z(x)=1+x 
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Duality for Feedforward-only CC (FFC)



› For the above example, z(x)=1+x 
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› We first define a minimum complementary polynomial
of                                                                  as the
polynomial of the smallest degree

such that 

Duality for Feedforward-only CC (FFC)



› Theorem 2 - For a FFC code, generated by a 
generator polynomial 

› gFFC(x) = a(x),
› let z(x) represent its minimum complementary 
polynomial of degree l. The log-domain SISO forward 
decoding of the FFC code can be implemented by its 
dual encoder with the generator polynomial of

Duality for Feedforward-only CC (FFC)



› Corollary 1- For a GC code, generated by a 
generator polynomial 

› let z(x) represent the minimum complementary 
polynomial of a(x). The log-domain SISO forward 
decoding of the GC code can be implemented by its 
dual encoder with the generator polynomial of

Duality for General Recursive CC (GC)



›

Duality for FBC
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› The encoder of reverse memory labeling of the code 

is obtained by changing 
(1) the labeling of the k-th encoder shift register of g(x) from Sk to 
Sn+1−k, 
(2) the feedforward encoder coefficient from ak to an−k, k=1,…,n 
(3) The feedback encoder coefficients from qk to qn−k, k=1,2,…,n.

Reverse Memory Labeling Encoder





› Theorem 3 - For a GC code, generated by a 
generator polynomial 

› let z(x) represent the minimum complementary 
polynomial of a(x). The log-domain SISO backward 
decoding of the GC code can be implemented by its 
dual encoder with reverse memory labeling and the 
generator polynomial of

Backward Decoding Duality
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› Define

› : soft outputs of the forward dual encoder
›
› : soft outputs of the backward dual encoder
›
› : BCJR bidirectional MAP decoder output

› Then we can represent           as

Duality for Bidirectional MAP 
Decoding 



› and       are the combining coefficients in real domain 
applied to the forward and backward dual encoder outputs

› They are obtained by comparing the bidirectional BCJR MAP 
decoding output expressions with the forward and backward 
dual encoder output expressions

› The combining coefficients for various 4-state and 8-state 
codes are obtained 

› Results are verified by simulations. The dual decoder has the 
exactly the same performance as the BCJR MAP decoder

Duality for Bidirectional MAP 
Decoding 



› For example, the combining coefficients for the 4 states FCC 
code                                                                        , 

where 
,

and ݔ෤ܿ݇ is the soft estimation of the received coded symbol ck

Duality for Bidirectional MAP 
Decoding 



› For example, the combining coefficients for the 4 states FCC 
code                                                                     , 

where 
,

and ݔ෤ܿ݇ is the soft estimation of the received coded symbol ck

Duality for Bidirectional MAP 
Decoding 
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› Revisited the BCJR SISO MAP forward and backward 
decoding process for the rate-1 convolutional codes

› Dual encoder structures of forward and backward decoding for 
various rate-1 convolutional codes are derived

› Dual decoder can reduce the decoder complexity from 
exponential to linear computation in terms of the memory order

› Duality property also reveals for the first time the explicit 
decoder input-output relationship, which can be used to 
facilitate the performance and decoding convergence analysis 

Conclusions 



› Rate-1 codes are mainly used as the component codes in 
concatenated codes

› The ISI channels can also be represented by a rate-1 
convolutional encoding process 

› Currently working on the duality properties for general 
convolutional codes and other codes 

Conclusions 
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Generalized Distributed Network-
Channel Coding 

› Designed for multi-user cooperative wireless networks 



Generalized Distributed Network-
Channel Coding 

› How to design the network code to maximize the 
diversity when taking into account inter-user link failure



Generalized Distributed Network-
Channel Coding 

› BC phase: Each user broadcasts k1 independent information 
packets

› Coop Phase: Each user transmits k2 parity packets consisting 
of nonbinary linear combinations of its k1 own information 
packets and the k1(M − 1) partners’ information packets (if 
decoded correctly)

BC phase COOP phase



Generalized Distributed Network-
Channel Coding 

› Represent the network transfer matrix as a generator 
matrix of a linear block code  

› The design of the network codes that maximizes the 
diversity order is equivalent to the design of linear block 
codes over a nonbinary finite field under the Hamming 
metric.

› A maximum distance separable (MDS) block code over a 
sufficiently large finite field as the network transfer matrix 
is the necessary condition for full diversity order under 
link failure model.



Two-Way Cellular Networks
› BS exchanges information with multiple users via a MIMO 

relay  
How to design precoding matrix at the BS and relay to 
maximize the bidirectional sum rate?



Thanks


